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Introduction 
 
Many parameters in a model such as StrathE2E2 cannot be determined independently, 
since there are either no data available, or they refer to processes operating on coarse 
functional guilds where experimental data on individual species are unlikely to be directly 
applicable. Hence parameter selection has to involve some sort of optimization to fit the 
whole model to relevant observational data. This presents both a conceptual and an 
algorithmic challenge. The algorithmic challenge revolves around the number of parameters 
involved, the likely degree of interactions between parameters, and limitations on their 
values. Hand fitting is practically out of the question under these circumstances, so we need 
to seek computational solutions. Conceptual issues revolve around whether to fit a transient 
or stationary model to observed data. 
 
Transient fitting attempts to optimize parameters so that model results match as closely as 
possible to the mean levels, time-trends and inter-annual variability of observed data on 
ecosystem components over as long a period as possible. In contrast, stationary fitting 
attempts to optimize parameters so that, with stationary annual cycles of driving data, then 
annual averages, integrated fluxes, or mean seasonal cycles of the stationary model match 
as closely as possible with long-term average observations on the state of the ecosystem. 
 
Both the transient and stationary fitting approaches have benefits and problems. In the 
transient case, the results are extremely sensitive to the initial conditions at the start of the 
fitting time period and how close these are to being stationary with respect to the initial 
values of the driving data. Initial conditions therefore become parameters in their own right, 
and in most cases these cannot be well constrained by observations since the real-world 
includes variability which is highly unlikely to be fully explained by the model. It must also be 
assumed that all of the real-world drivers causing trends in the ecosystem are explicitly 
included in the model. Alternatively, models must include time-varying bias correction 
parameters which effectively absorb trends and variability in the observed data which are not 
capable of being explained by generic parameters of the model (e.g. recruitment variability of 
fish). However, the benefits of transient fitting are that, provided there is sufficient contrast in 
the observed data, the reactivity of the model can be accurately parameterised. 
 
The main benefits of stationary state fitting are firstly that potentially a greater diversity of 
observational data may be available, and secondly that for a deterministic model the results 
are independent of initial conditions. However, the assumption that a long-term average of 
the real-world represents something close to a stationary state with respect to both model 
components and drivers is clearly a major issue. In addition, the stationary state fitting 
approach will not necessarily constrain the reactivity of the system to changes in mean 
levels of external drivers. 
 



Parameter optimization for StrathE2E2 
 
The parameter optimization scheme provided with StrathE2E2 is configured as a stationary 
state fitting method, though there is no intrinsic reason why is could not be adapted for time-
series fitting. The methodology involves likelihood estimation and a simulated annealing 
scheme using the Metropolis-Hastings iterative algorithm (Bertsimas & Tsitsiklis, 1993; 
Cerny, 1985; Kavanagh et al., 2004; Kirkpatrick et al., 1983; Matear, 1995). 
 
The Metropolis-Hastings algorithm implemented with StrathE2E2 automates the acceptance 
or rejection of proposed new randomly generated sets of model parameters (Figure 1). The 
objective is to maximize the likelihood of the set of observed (target) indices given a vector 
of model parameter values. Starting with an initial informed-guess parameter vector θ[0], the 
procedure iterates for k = 1, 2, 3…, and at each iteration the parameters are independently 
‘jiggled’ by proposing θ* = θ[k-1] + δ[k], where δ[k] is a vector of random values from a 
gaussian distribution of mean 0 and standard deviation given by a fixed coefficient of 
variation applied to the current value of each parameter selected for fitting (θcurrent  = θ[k-1]).  
There are some special-case parameters in StrathE2E2 which are bounded by known limits, 
and the preference parameters which require to be renormalized to sum to 1.0 for each 
predator after the addition of δ[k].  
 
After running the model to a stationary state with the θ* parameter vector, and extracting 
simulated versions of the observed ecosystem state indices (i = 1 to I) (where the observed 

indices each have a standard deviation σi), an overall error function 𝜒𝜃∗
2   is calculated for the 

model as follows:  
 

𝜒𝜃∗
2 =  

∑ (
(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖− 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝜃∗,𝑖)

2

2𝜎𝑖
2 )𝑖=𝐼

𝑖=1

𝐼
               eqn 1 

 
The likelihood of the suite of observations given the parameter values is then estimated as:  
 

𝑃(𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠|𝜃∗) = exp (−𝜒𝜃∗
2 )               eqn 2 

 
The change in performance of the model due to the proposed jiggled parameter vector is 

measured by (𝜒𝜃∗
2 −  𝜒𝜃𝑐𝑢𝑟𝑟𝑒𝑛𝑡

2 ). A simple ‘hill-climbing’ scheme would accept the proposed 

vector θ* as a new version of θcurrent for the next iteration only if the likelihood ratio (LR)  

𝑒𝑥𝑝(𝜒𝜃∗
2 −  𝜒𝜃𝑐𝑢𝑟𝑟𝑒𝑛𝑡

2 ) > 1. Over many iterations θcurrent should then migrate towards a 

maximum likelihood fit. However, such schemes are notorious for becoming trapped in local 
optima. Simulated annealing attempts to mitigate this risk by accepting a proportion of 
instances of θ* which produce worse results than θcurrent (i.e.  likelihood ratio < 1), thereby 
exploring a wider range of the parameter space. The process is an analogy of the way in 
which crystals form in a liquid metal as it cools. Taking Γ[k] to represent the ‘temperature’ of 
the system at iteration k, the probability of accepting θ* as the new θcurrent is dependent on 
the modified likelihood ratio: 
 

𝐿𝑅𝑚 =  exp ((𝜒𝜃∗
2 − 𝜒𝜃𝑐𝑢𝑟𝑟𝑒𝑛𝑡

2 )/Γ[𝑘])              eqn 3 

 
The value of Γ[k] is allowed to ‘cool’ as the iterations progress (increasing k). As Γ[k] 
decreases towards 0 the system assumes a simple hill-climbing mode (i.e. only vectors θ* 
producing likelihood ratios > 1 are accepted).  In the early stages, when Γ[k] >> 0, a 
proportion of θ* producing likelihood ratios < 1 are accepted. Practically, after each model 
run θ[k] = θ* only if LRm  ≥  λ, where λ is drawn from a uniform random distribution between 0  
and 1, otherwise θ[k] = θ[k-1] for the next iteration. At each iteration, both the currently 



accepted and the proposed parameter vectors are saved, along with the resulting likelihood 
of the observations given the parameters. 
 
The sequence of P(observed|θ)[k]) should converge to a maximum value representing the 
best attainable fit between the model and the observations given the model structure and 
driving data. However, the rate at which convergence is achieved, and potentially the 
converged vector itself, are dependent on the cooling schedule and the magnitude of the 
jiggling coefficient of variation (cv) used to generate δ[k]. A geometrically decreasing 
temperature is applied (Γ[k] = r.Γ[k-1]), and after experimentation with the value of r and cv, 
the  finally adopted values for fitting StrathE2E2 models to achieve consistency of 
convergence within a sensible number of iterations (<10000) are: r = 0.975, cv = 0.005. The 
best-fit value of θ[k] is regarded as being that remaining when no new parameter vectors are 
accepted within 200 iterations. 
 

 
 
FIGURE 1 Flow diagram from the implementation of the simulated annealing parameter 
optimization scheme. 
 
 
The target data to which the model is fitted are a set of indices of the real-world state of the 
ecosystem and their associated uncertainties (standard deviations). The indices include 
annual average biomasses or concentrations, annual integrated production rates of food 
web components, annual integrated dietary intakes, fishery landings and discards, 
denitrification rate, and other properties (Table 1). For each index, the code calculates an 
equivalent value for the final year of each model run as the basis for the likelihood 
estimation. Individual indices can be included or excluded from the likelihood calculation by 
means of a switch (value 1 or 0) in the input file containing the observational data. 
 
 
 

 



TABLE 1 List of the observational indices of ecosystem state that are available for inclusion 
in the likelihood calculation as part of the model optimization process. The simulated 
annealing code derives equivalent values from the final year of model output for each 
iteration of the fitting process. Individual indices can be included or excluded from the 
process by parameter settings in the input file. 
 

Description Units 

Whole domain annual total primary production mMN.m-2.y-1 

Whole domain annual new production from depth integrated nitrate 
drawdown mMN.m-2.y-1 

Annual within forest net production of macroalgae gC.m-2.y-1 

Whole domain annual omnivorous zooplankton gross production mMN.m-2.y-1 

Whole domain annual carnivorous zooplankton gross production mMN.m-2.y-1 

Whole domain annual planktivorous fish gross production mMN.m-2.y-1 

Whole domain annual demersal fish gross production mMN.m-2.y-1 

Whole domain annual filter/deposit feeding benthos gross 
production mMN.m-2.y-1 

Whole domain annual carnivorous/scavenge feeding benthos gross 
production mMN.m-2.y-1 

Whole domain annual net production of birds mMN.m-2.y-1 

Whole domain annual net production of pinnipeds mMN.m-2.y-1 

Whole domain annual net production of cetaceans mMN.m-2.y-1 

Whole domain annual maximum monthly averaged concentration of 
larvae of filter/deposit feeding benthos mMN.m-3 

Whole domain annual maximum of monthly averaged concentration 
of larvae of carnivorous/scavenge feeding benthos mMN.m-3 

Whole domain annual consumption of planktivorous fish by fish mMN.m-2.y-1 

Whole domain annual consumption of demersal fish by fish mMN.m-2.y-1 

Whole domain annual consumption of omnivorous zooplankton by 
fish and fish larvae mMN.m-2.y-1 

Whole domain annual consumption of omnivorous zooplankton by 
carnivorous zooplankton mMN.m-2.y-1 

Whole domain annual consumption of benthos by fish mMN.m-2.y-1 

Whole domain annual food consumption by birds mMN.m-2.y-1 

Whole domain proportion planktivorous fish in diet of birds dimensionless 

Whole domain proportion demersal fish in diet of birds dimensionless 

Whole domain proportion migratory fish in diet of birds dimensionless 

Whole domain proportion discards in diet of birds dimensionless 

Whole domain annual food consumption by pinnipeds mMN.m-2.y-1 

Whole domain proportion planktivorous fish in diet of pinnipeds dimensionless 

Whole domain proportion demersal fish in diet of pinnipeds dimensionless 

Whole domain proportion migratory fish in diet of pinnipeds dimensionless 

Whole domain annual food consumption by cetaceans mMN.m-2.y-1 

Whole domain proportion planktivorous fish in diet of cetaceans dimensionless 

Whole domain proportion demersal fish in diet of cetaceans dimensionless 

Whole domain proportion migratory fish in diet of cetaceans dimensionless 

Whole domain annual planktivorous fish landings (live weight) mMN.m-2.y-1 

Whole domain annual demersal fish landings (live weight) mMN.m-2.y-1 



Whole domain annual migratory fish landings (live weight) mMN.m-2.y-1 

Whole domain annual filter/deposit feeding benthos landings (live 
weight) mMN.m-2.y-1 

Whole domain annual carnivorous/scavenge feeding benthos 
landings (live weight) mMN.m-2.y-1 

Whole domain annual carnivorous zooplankton landings (live 
weight) mMN.m-2.y-1 

Whole domain annual macrophyte landings (live weight) mMN.m-2.y-1 

Whole domain annual carbon gross production:biomass ratio of 
macrophytes y-1 

Whole domain annual gross production:biomass ratio of larvae of 
filter/deposit feeding benthos y-1 

Whole domain annual gross production:biomass ratio of larvae of 
carnivorous/scavenge feeding benthos y-1 

Whole domain annual gross production:biomass ratio of 
filter/deposit feeding benthos y-1 

Whole domain annual gross production:biomass ratio of 
carnivorous/scavenge feeding benthos y-1 

Whole domain annual gross production:biomass ratio omnivorous 
zooplankton y-1 

Whole domain annual gross production:biomass ratio of 
carnivorous zooplankton y-1 

Whole domain annual gross production:biomass ratio of larvae of 
planktivorous fish y-1 

Whole domain annual gross production:biomass ratio of larvae of 
demersal fish y-1 

Whole domain annual gross production:biomass ratio planktivorous 
fish y-1 

Whole domain annual gross production:biomass ratio of demersal 
fish y-1 

Whole domain annual gross production:biomass ratio of migratory 
fish y-1 

Whole domain annual net production:biomass ratio of birds y-1 

Whole domain annual net production:biomass ratio of pinnipeds y-1 

Whole domain annual net production:biomass ratio of cetaceans y-1 

Annual average proportion of kelp carbon uptake which is exuded dimensionless 

Whole domain annual average molar nitrogen:carbon ratio of kelp dimensionless 

Whole domain annual denitrification mMN.m-2.y-1 

Whole domain proportion of demersal fish catch discarded dimensionless 

Annual average ammonia concentration in inshore and offshore 
porewater of sand (grain size >0.15mm) mMN.m3 

Annual average ammonia concentration in inshore and offshore 
porewater of mud (grain size < 0.15mm) mMN.m3 

Annual average nitrate concentration in inshore and offshore 
porewater of sand (grain size >0.15mm) mMN.m3 

Annual average nitrate concentration in inshore and offshore 
porewater of mud (grain size <0.15mm) mMN.m-3 

Annual average total (labile + refractory) organic N content in 
inshore and offshore of sand (grain size > 0.15mm) %N (gN.(g dry sed)-1) 

Annual average total (labile + refractory) organic N content in 
inshore and offshore of mud (grain size < 0.15mm) %N (gN.(g dry sed)-1) 

Whole domain average winter (Nov-Feb) nitrate concentration in mMN.m-3 



the shallow layer 

Whole domain average summer (May-Aug) nitrate concentration in 
the shallow layer mMN.m-3 

Whole domain average winter (Nov-Feb) nitrate concentration in 
the deep layer mMN.m-3 

Whole domain average summer (May-Aug) nitrate concentration in 
the deep layer mMN.m-3 

Whole domain average winter (Nov-Feb) ammonia concentration in 
the shallow layer mMN.m-3 

Whole domain average summer (May-Aug) ammonia concentration 
in the shallow layer mMN.m-3 

Whole domain average winter (Nov-Feb) ammonia concentration in 
the deep layer mMN.m-3 

Whole domain average summer (May-Aug) ammonia concentration 
in the deep layer mMN.m-3 

Inshore:offshore ratio of annual mean carnivorous zooplankton 
depth averaged concentration dimensionless 

Inshore:offshore ratio of annual mean omnivorous zooplankton 
depth averaged concentration dimensionless 

Inshore:offshore ratio of annual mean phytoplankton surface layer 
concentration dimensionless 

Inshore:offshore ratio of annual mean nitrate surface layer 
concentration dimensionless 

Inshore:offshore ratio of annual mean ammonia surface layer 
concentration dimensionless 

Inshore:offshore ratio of annual mean planktivorous fish density per 
m-2 dimensionless 

Inshore:offshore ratio of annual mean demersal fish density per m-2 dimensionless 

Whole domain annual by-catch of birds mMN.m-2.y-1 

Whole domain annual by-catch of pinnipeds mMN.m-2.y-1 

Whole domain annual by-catch of cetaceans mMN.m-2.y-1 

Proportion of kelp annual nitrogen uptake exported as beach-cast dimensionless 

Whole domain cetacean landings by whaling vessels mMN.m-2.y-1 

 
 
 
Versions of the simulated annealing scheme 
 
Three groups of parameters in the combined ecology and fishing fleet model system might 
be considered as candidates for optimization, depending on the availability of external data: 

 Ecology model parameters 

 Scaling parameters linking effort to harvest ratio 

 Fishing gear activity rates 
 
It is clearly unrealistic to expect to be able to optimize all of these sets of parameters 
concurrently since there is a risk that some may be confounded. So, the R package provides 
three versions of the simulated annealing system, each of which optimizes one of these 
groups of parameters, given knowledge on the other two. 
 
 
Ecology model parameter optimization 
 



Optimizing the parameters of the ecology model requires that fishing gear activity rates and 
the parameters linking effort to harvest ratios are know. 
 
Certain parameters of the ecology model are excluded from the optimization process 
because they are either confounded with other parameters in some way or there is a clear 
route to establishing values from external evidence (Table 2). All other parameters, defining 
the prey preferences of all the living components of the model, the uptake and mortality rate 
coefficients, and the rate coefficients for the biogeochemical processes, are eligible for 
optimization. A subset of the feeding rate parameters for the top-predators can be optionally 
excluded from the optimization process if reasonable values can be independently 
estimated. Separate coefficients of variation can be set for different classes of parameters 
(preference parameters, maximum uptake rates, half saturation coefficients, microbial rates, 
density dependent mortality rates) via a setup text file. These can be changed during a run, 
to enable exploration of the effects of parameter search patterns. 
 
The running code is initialised with a proposed parameter set formed of three asci csv files 
(preference parameters, uptake and mortality parameters, microbiology and other 
parameters). At the end of a run the code exports a new set of these three files containing 
the accepted values for the maximum likelihood model. 
 
 
TABLE 2 Background to the parameters of the ecological model which require to be fixed 

from external evidence and are excluded from the simulated annealing process.  

Parameter type Description 

Assimilation 
efficiencies for each 
living guild in the model 
(Heath 2012) 

Proportion of the ingested mass of food that contributes to new 
body tissue, after subtracting defecation and the metabolic costs of 
digestion and synthesis. 

Biomass loss rates due 
to temperature-
dependent metabolism 
for each living resource 
guild 

Proportion of biomass lost to ammonia per day due to non-feeding 
related metabolism at a given reference temperature. Temperature 
dependency following a Q10 function. 

Q10 values for 
temperature dependent 
processes, and the Q10 
reference temperature  

Separate Q10 values for autotrophic uptake of nutrient, 
heterotrophic feeding, and heterotrophic metabolism based on 
literature data. 

Light intensity required 
to saturate autotrophic 
nutrient uptake  

Light saturation intensity for nutrient uptake cannot be treated as a 
fitted value since it is confounded with other uptake parameters. 
Value estimated from survey of field and laboratory experiments. 

Annual weight specific 
fecundities of 
planktivorous and 
demersal fish guilds 
and the two benthos 
guilds in the model 
(filter/deposit feeders 
and 
carnivore/scavenge 
feeders) 

Guild-level values of the annual proportion of biomass which is 
shed as eggs 

Spawning start and 
end dates for fish and 
benthos 

Day-number (assuming a 360-day year) of the onset and end of 
spawning to be based on such empirical data as are available. 

Recruitment start and Day-number (assuming a 360-day year) of the onset and end of 



end dates for fish and 
benthos 

recruitment from the larval stage to the main guild biomass. 
Recruitment is assumed to occur at a uniform daily rate between 
the start and end dates. 

Extra-domain stock 
biomass of migratory 
fish, and the proportion 
invading the domain 
each year. Start and 
end dates for the 
annual invasion, and 
start and end dates for 
the emigration. (see 
description in this 
document). 

Biomass of the wider stock contributing to the proportion forming 
the transient population in the model domain extracted from 
fisheries stock assessments. Day-number (assuming a 360-day 
year) of the onset and end of immigration and emigration phases. 
Immigration parameterised as fixed mass flux per day between the 
onset and end dates. Emigration parameterised as a proportion of 
offshore biomass leaving per day between the onset and end 
dates. Values based on such empirical data from fisheries and 
stock assessments as are available.  

Harvestable biomass 
density threshold for 
each resource guild. 

The living resource guilds in the model represent a mixture of 
harvestable and non-harvestable species, especially the 
invertebrate guilds. The density threshold parameter sets a limit for 
the guild biomass below which the harvestable species are 
assumed to be exhausted. Values to be based on such empirical 
data from surveys, fisheries and stock assessments as are 
available. 

Minimum inedible 
biomass of carnivorous 
zooplankton 

The carnivorous zooplankton guild is a key component of the food 
web, predated on by all the fish and top-predators. However it 
represents an extremely diverse range of fauna many of which are 
not edible in significant quantities by the guild predators, e.g. 
scyphomedusae. A minimum edible threshold is set to ensure that 
the guild as a whole cannot be extirpated by predation. 

 

 

 
Optimization of scaling parameters linking fishing effort to harvest ratio 
 
Optimizing the scaling parameters linking fishing effort to harvest ratios requires that all of 
the ecology model parameters are known, and that the activity rates and distribution of each 
fishing gear is known. This is a situation which might apply when the coupled fishing and 
ecology model system has been comprehensively fitted for a data-rich period of time, and is 
then being applied to a different data-poor period where at least the gear activity rates are 
known. 
 
Proposed values of the scaling parameters are contained in the configuration file for the 
fishing fleet model. In addition, the model setup includes a separate asci csv file 
(harvest_ratio_multiplier.csv) containing multipliers to be applied to each of these scaling 
parameters. These are useful when conducting scenario experiments, but would ordinarily 
be set to 1.0. The simulated annealing code for optimizing the scaling values iterates the 
multiplier values to seek the combination producing the best fit of the overall model to the set 
of target data. At the end of the process, the code saves the history of proposed and 
accepted multiplier values. If deemed reasonable, the final accepted version of the 
multipliers can then be manually applied to the corresponding rates in the fishing fleet 
configuration to produce an updated version. The effort-harvest ratio multipliers associated 
with birds, pinnipeds and cetaceans are likely to be poorly constrained by observational data 
and may need to be set independently. Nevertheless they are included in the process here. 
 
 
 



Optimization of fishing activity rates 
 
Usually, the fishing gear activity rates are a known input to the model. Sometimes, however, 
it may be necessary to use the model to hindcast the likely rates of activity given established 
values for the ecology model parameters and the scaling parameters linking effort to harvest 
ratios.  This is a situation that might apply when the coupled fishing and ecology model 
system has been comprehensively fitted for a data-rich period of time, and is then being 
applied to a different data-poor period where the fishing gear activity rates are unknown or 
only approximately known. 
 
Proposed values of the gear activity rates are contained in an input file for the fishing fleet 
model. In addition, the model setup includes a separate asci csv file 
(fishing_activity_multiplier.csv) containing multipliers to be applied to each of these rates. 
These are useful when conducting scenario experiments, but would ordinarily be set to 1.0. 
In the same way as for the effort-harvest ratio scaling value fitting, the simulated annealing 
code for optimizing the gear activity rates iterates the multiplier values to seek the 
combination producing the best fit of the overall model to the set of target data. At the end of 
the process, the code saves the history of proposed and accepted multiplier values. If 
deemed reasonable, the final accepted version of the multipliers can then be manually 
applied to the corresponding rates in the initial input file to produce an updated version. 
 
There are two alternative functions for optimizing fishing activity rates. The first is 
conceptually equivalent to the simulated annealing functions for optimizing the ecology 
model parameters and the harvest ratio scaling parameters, in that the target for fitting is the 
same database of observational indices of ecosystem status. This uses the fully coupled 
fishing fleet and ecology model system and hence is costly to run. The second version is 
much faster and relies only on the fishing fleet model, but here the target for optimization is a 
set of known harvest ratios in each spatial zone. The circumstances under which the past 
harvest ratios for each guild are sufficiently well known to enable this fitting approach are 
likely to be rather restricted, but this method is probably the more robust. In both approaches 
the chief problem is that the selectivity patterns of the fishing gears are likely to be highly 
overlapping so that it will be difficult to identify a realistic maximum likelihood set of activity 
rates. For this reason the functions make use of a table of 'gear linkage' parameters which 
constrain the extent to which groups of gears can vary independently during the parameter 
searching process. This makes since management measures which may have restricted the 
activities of e.g. demersal trawlers, will also have been applicable to e.g. beam trawlers. 
However, the linkage table is populated partly by judgement rather than by hard data. 
 
 

Sensitivity analysis 
 
Sensitivity analysis helps to highlight the parameters which have the most influence in the 
simulated annealing optimization process. In addition the analysis can help to identify 
parameters for which constraint by external information would be most beneficial. 
 
Simple one-at-a-time sensitivity analysis of parameters in a model is a straightforward 
process when there are few parameters and relatively little interaction between parameters. 
However, StrathE2E2 include many parameters and there is a strong possibility of 
interactions, so a more sophisticated scheme is required. 
 
The R package includes a function to perform global analysis of parameter sensitivity using 
the Morris method (Morris, 1991). This involves a factorial sampling scheme to generate 
parameter values for replicate model runs and generate values for the ‘elementary effect’ 
(EE) of each parameter. The mean and standard deviation of EE values over many runs 



allows ranking of the parameters in terms of the sensitivity of their effects on the model, and 
the strength of interactions with other parameters. 
 
The parent parameter set for the sensitivity analysis (θ) incorporates all of the parameters 
and inputs to the model, i.e. the maximum-likelihood set of fitted ecology model parameters 
produced by the simulated annealing scheme, plus the fixed ecological parameters, the 
physical configuration parameters of the model (layer thicknesses, inshore/offshore areas), 
the parameters passed to the ecology model from the fishing fleet model, and the fishing 
activity rates and environmental driving data . The sensitivity to the environmental driving 
data is investigated by applying a scaling factor uniformly to the annual cycle of 
environmental data values. 
 
From this parent set, a series of child-sets (θ*k where 1 ≤ k ≤ r) is generated by applying a 
separate random increment to each parameter; θ*k = θ + δ[k] where δ[k] is a vector of 
random values from a gaussian distribution of mean 0 and standard deviation given by a 
fixed coefficient of variation applied to the parent-set value of each parameter. This process 
is equivalent to that for generating parameter proposals in the simulated annealing scheme, 
except that all of the parameters and model inputs are varied in the sensitivity analysis, 
rather than just the subset of parameters to be fitted. 
 
For each of the child-sets of parameters, the likelihood of the suite of observed data indices 
P(observations|θ*k,0) is calculated following runs of the model to stationary state, exactly as 
in simulated annealing scheme. We refer to these as trajectories. 
 
Then, for each trajectory, the parameters (1 ≤ i ≤ n) are varied in turn, one at a time, by 
adding a fixed proportionality increment, the model re-run, and the likelihood computed 
(P(observations|θ*k,i)). The proportionality increment for a given trajectory is drawn at 
random from a set of four fixed levels in the range ±10% of the child parameter set (-10%, -
5%, +5%, +10%, i.e. Δ = 0.9, 0.95, 1.05, 1.10), so that: 
 

θ[i]*k,i = θ[i]*k,0 . Δ[z]               eqn 4 
 
where θ[i]* is the ith element of θ*, Δ[z] is the zth element of Δ, and z is drawn at random from 
the series (1, 2, 3, 4) for each value of k. Hence, for each trajectory the model runs are 
repeated n+1 times, where i=0 corresponds to the baseline run for each trajectory. The total 
number of nested runs to support the sensitivity analysis is thus r.(n+1). 
 
From each level-run of the model (in which a single parameter is perturbed), and its 
corresponding likelihood, the elementary effect of the parameter is calculated as 
 

𝐸𝐸𝑘,𝑖 =  
𝑃(𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠|𝜃𝑘,𝑖

∗ )− 𝑃(𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠|𝜃𝑘,0
∗ )

√(∆[𝑧]−1)2
             eqn 5 

 
On completion of the runs for all trajectories, the mean (μi) and standard deviation (Si) of the 
r elementary effects for each parameter (i) are calculated. For the mean, 

 

𝜇𝑖 =  
1

𝑟
∑ 𝐸𝐸𝑘,𝑖

𝑟
𝑘=1                  eqn 6 

 
The magnitude of the mean represents the sensitivity of each parameter, and the 
corresponding standard deviation indicates the degree of non-linearity in the response or 
interaction with other parameters. The standard error of the mean for each parameter (SEMi) 

is given by: 
 

𝑆𝐸𝑀𝑖 =
𝑆𝑖

√𝑟
                 eqn 7 



 

If 𝑆𝑖 >  |𝜇𝑖| ∙
√𝑟

2
 then we can approximately conclude that μi is significantly greater than zero. 

 
 

Monte Carlo computation of credible intervals for the model 
outputs 
 
The Monte Carlo scheme provided with the StrathE2E2 package has two modes of 
operation. The first is referred to as ‘baseline mode’. This involves generating a list of 
ecology model parameter sets and, for each set, determining the likelihood of a suite of 
observational data consistent with the environmental and fishery drivers. The model outputs 
generated with each set are then weighted by the likelihood before deriving quantiles of their 
distribution. The quantile ranges represent credible intervals of the model outputs. 
 
The second mode of operation is referred to as the ‘scenario mode’. In this case, the 
parameter sets and their associated likelihoods from a baseline mode simulation, are used 
to generate model outputs for scenarios of environmental or fishing drivers – e.g. increased 
activity by selected gears, or warmer sea temperatures. These scenario outputs are then 
weighted by the baseline mode likelihoods before derivation of quantiles and credible 
intervals. 
 
Baseline mode operation. 
 
The initial (parent) ecology model parameter set (θ) for a baseline mode Monte Carlo 
simulation should be the maximum-likelihood set produced by the simulated annealing 
scheme. From this parent set, a series of child-sets (θ*k , where 1 ≤ k ≤ r and r = e.g. 1000), 
is generated by applying a separate random increment to each of the parameters; θ*k = θ + 
δ[k] where δ[k] is a vector of random values from a uniform (rather than a gaussian) 
distribution of mean 0 and given range.  
 
For each of the parameter sets, the likelihood of the suite of observed data indices 
P(observations|θ*k) is calculated following a run of the model to stationary state, and all the 
output from the final, stationary year of each run is saved (k = 0 to r, where k = 0 
corresponds to the maximum likelihood (parent) parameter set). 
 
To calculate the credible interval for any direct or derived model output variable (e.g. annual 
average mass density of a state variable, or the mass density on a given day in the final 
year), the values from the individual model runs (Vk) and the associated likelihoods (Pk) are 
assembled as a list of (r + 1; k = 0 to r) pairs (ak = (Vk,Pk)). The list is then sorted by 
ascending values of V (aj ; j = 1 to (r + 1) such that Vj ≥ V(j - 1)). The vector of cumulative 
likelihoods is then calculated as follows: 
 

Cj = ( Pj=1,   ∑ 𝑃𝑗
𝑗=2
𝑗=1  ,   ∑ 𝑃𝑗

𝑗=3
𝑗=1  ,   ∑ 𝑃𝑗

𝑗=4
𝑗=1   …   ∑ 𝑃𝑗

𝑗=(𝑟+1)
𝑗=1   )          eqn 8 

 
and the proportions of maximum cumulative likelihood as Qj = Cj/C(r+1). 
 
Finally, values of V corresponding to discrete values of Q = {0.005, 0.25, 0.5, 0.75, 0.995} 
are then extracted by interpolation. These values span the 0.5% and 99.5% credible 
intervals of the model output given the observed target data and uncertainty in the fitted 
ecology parameters. Note that uncertainties in the fixed ecology parameters, fishing fleet 
parameters, and environmental driving data are not reflected in these credible intervals. 
 
 



Scenario mode operation 
 
The aim of the scenario mode is to estimate credible intervals of model outputs for an 
experimental scenario state in which environmental and/or fishery driving data have been 
altered from the baseline to reflect, e.g. warming conditions or alternative fishery 
configurations. In such cases there cannot be any target data against which to measure the 
performance of the model. Instead, we use the parameter sets and associated likelihoods 
generated in a baseline mode simulation to generate outputs and credible intervals with the 
scenario drivers. 
 
To calculate the credible interval for output variables in scenario mode, the values from the 
individual scenario model runs (VSk) are paired up with the baseline mode likelihoods (Pk) 
associated with each parameter set. Then, as in the baseline mode, the values are 
assembled as a list of (r + 1; k = 0 to r) pairs (ak = (VSk,Pk)). The list is then sorted by 
ascending values of VS (aj ; j = 1 to (r + 1) such that VSj ≥ VS(j - 1)). The vector of cumulative 
likelihoods is then calculated as in equation 8, leading to the scenario mode proportions of 
maximum cumulative likelihood QSj = Cj/C(r+1). 
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